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Problem statement
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● Numerical Weather Predictions (NWP) are systematically biased w.r.t. 
observations due to local effects and unresolved phenomena

● We want to predict in situ surface temperature given a deterministic 
global weather forecast

Credits: sciencephoto.com



To what extent can we recover forecast 
uncertainty without ensemble NWP?
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● Multi-layer perceptrons (MLPs) have proven very flexible for many 
variables and time horizons

● They are flexible in terms of the uncertainty representation 
[Bremnes2020] [Schulz2022]

● To what extent can they recover a distributional forecast from a 
deterministic NWP?

● Should we train them separately for all lead times or simultaneously?

State of the art
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Postprocessing model architecture
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Postprocessing model architecture
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Postprocessing model architecture
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Dataset (NWP Model)

2021-12-01
GDPS 8.0.0

2019-01-01
GDPS 6.1.0 
(contd)

2019-07-03
GDPS 7.0.0

2020-01-21
GDPS 7.1.0

2020-12-01

Training+Validation Test

● Outputs from the Global Deterministic 
Prediction System (GDPS)

● Every 24h up to 10 days
● 0.2 -> 0.15º
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● NWP-Dependent predictors
○ Mix of temperature, wind, geopotential height, 

humidity
○ Surface, 1000, 850 and 500 hPa
○ 18 in total

● NWP-Independent predictors
○ Forecast day, Forecast time of day
○ Latitude, longitude, elevation
○ Lead time



● We target surface temperature 
observations from the METAR 
network

● Observations harvested from the 
Iowa State University 
Environmental Mesonet

● 1066 stations in Canada and USA

Dataset (Observations)
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Results
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Postprocessing performance metrics
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Rank histograms
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Effect of lead time conditioning strategy

13



Conclusion

● We successfully produced calibrated distributional forecasts given a 
deterministic forecasts

● Journal paper under review
● Choice of uncertainty representation has little impact on marginal 

performance but affects the calibration (rank histograms)
● It helps to train all lead times in a single model
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● Quantify the impact of supplementary ensemble members on the 
output distribution
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Outlook



I have a few questions about the EUPPBench dataset if anyone is 
available!

P.S.
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https://www.github.com/davidlandry93/pp2023


18

Thank you!



Lead time embedding self-similarity
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Metrics table
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CRPS for lead time conditioning strategies
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Skill gain spatial distribution
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