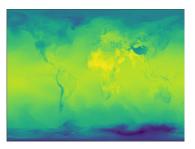
Leveraging deterministic weather forecasts for in-situ probabilistic predictions

David Landry, Anastase Charantonis, Claire Monteleoni INRIA Paris

EGU General Assembly 2024, Vienna (Session NP5.2) 2024-04-19

Problem statement

- Numerical Weather Predictions (NWP) are systematically biased w.r.t. observations due to local effects and unresolved phenomena
- We want to predict in situ surface temperature given a deterministic global weather forecast

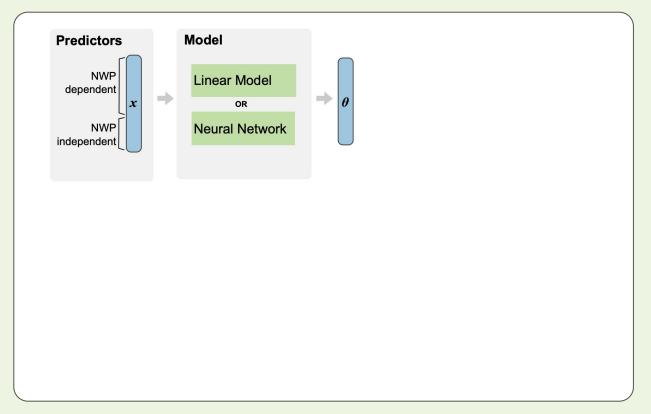


Credits: sciencephoto.com

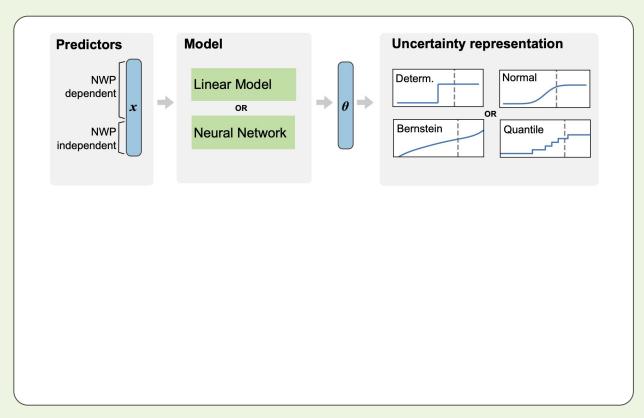
To what extent can we recover forecast uncertainty without ensemble NWP?

State of the art

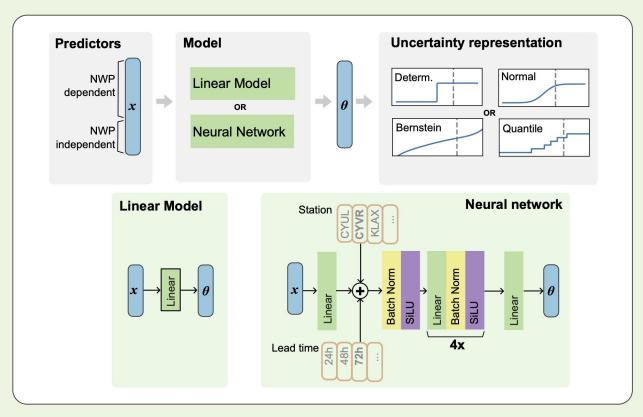
- Multi-layer perceptrons (MLPs) have proven very flexible for many variables and time horizons
- They are flexible in terms of the uncertainty representation [Bremnes2020] [Schulz2022]
- To what extent can they recover a distributional forecast from a deterministic NWP?
- Should we train them separately for all lead times or simultaneously?



Postprocessing model architecture



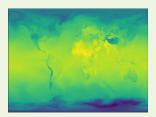
Postprocessing model architecture



Postprocessing model architecture

Dataset (NWP Model)

- Outputs from the Global Deterministic Prediction System (GDPS)
- Every 24h up to 10 days
- 0.2 -> 0.15°



- NWP-Dependent predictors
 - Mix of temperature, wind, geopotential height, humidity
 - Surface, 1000, 850 and 500 hPa
 - **18 in total**

NWP-Independent predictors

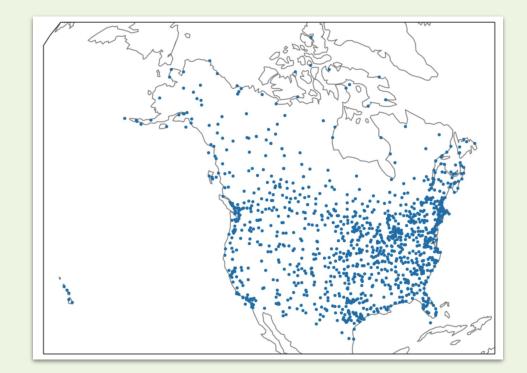
- Forecast day, Forecast time of day
- Latitude, longitude, elevation
- Lead time

2019-01-01 GDPS 6.1.0	2019-07-03 GDPS 7.0.0	2020-01-21 GDPS 7.1.0	2020-12-01	2021-12-01 GDPS 8.0.0
(contd)				

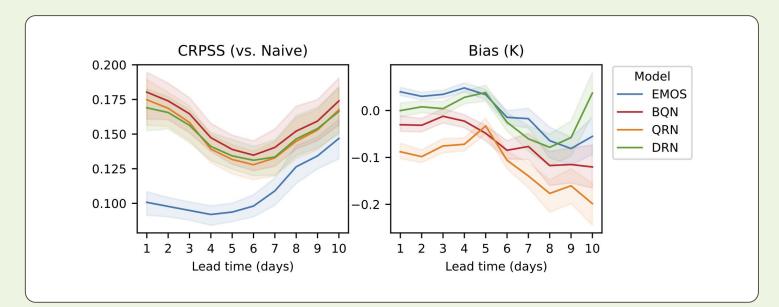
Training+Validation

Dataset (Observations)

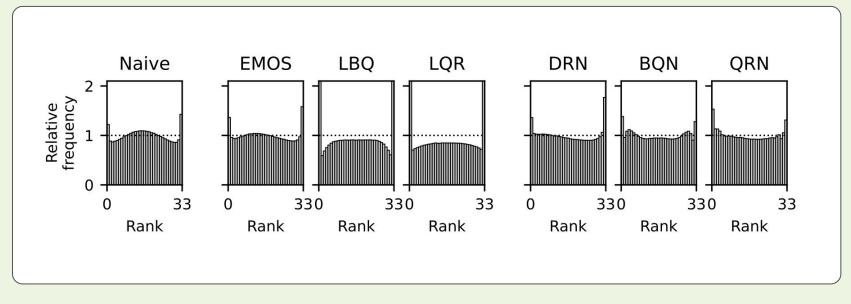
- We target surface temperature observations from the METAR network
- Observations harvested from the Iowa State University Environmental Mesonet
- 1066 stations in Canada and USA



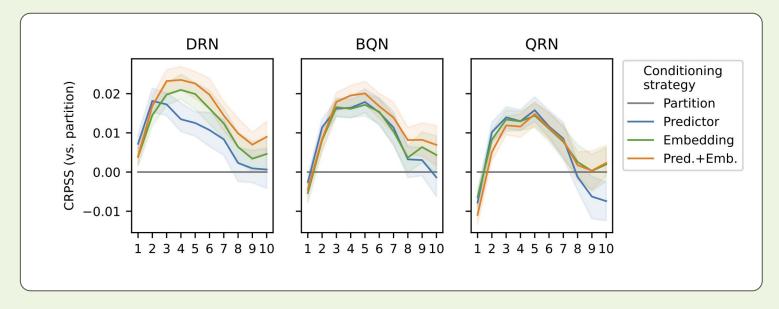
Results



Postprocessing performance metrics



Rank histograms



Effect of lead time conditioning strategy

Conclusion

- We successfully produced calibrated distributional forecasts given a deterministic forecasts
- Journal paper under review
- Choice of uncertainty representation has little impact on marginal performance but affects the calibration (rank histograms)
- It helps to train all lead times in a single model

Outlook

• Quantify the impact of supplementary ensemble members on the output distribution

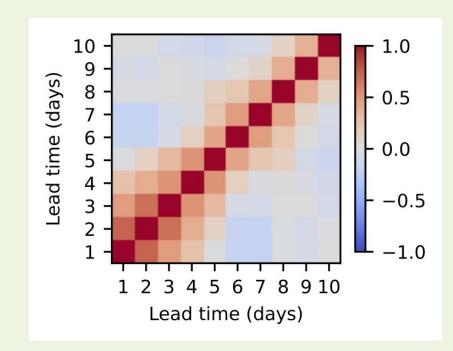
I have a few questions about the **EUPPBench** dataset if anyone is available!

Links, References, Acknowledgements

- Github: <u>https://www.github.com/davidlandry93/pp2023</u>
- [Schulz2022] Schulz, B. & Lerch, S. Machine Learning Methods for Postprocessing Ensemble Forecasts of Wind Gusts: A Systematic Comparison. *Monthly Weather Review* 150, 235–257 (2022).
- **[Bremnes2020]** Bremnes, J. B. Ensemble Postprocessing Using Quantile Function Regression Based on Neural Networks and Bernstein Polynomials. Monthly Weather Review 148, 403–414 (2020).

Environment and Climate Change Canada Environnement et Changement climatique Canada

Thank you!



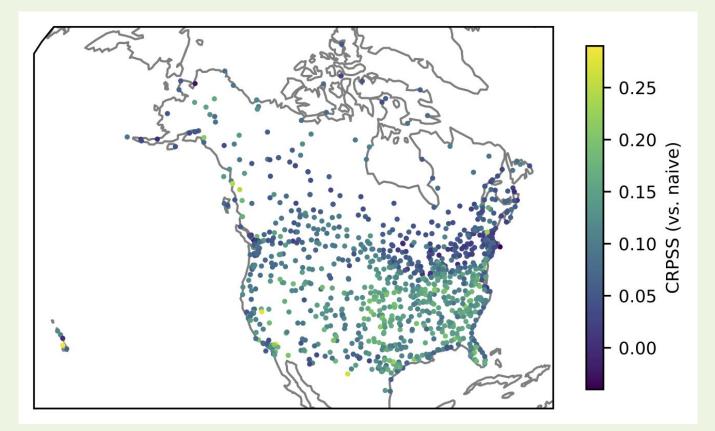
Lead time embedding self-similarity

	NV	VP	Linear			Neural Network				
Model	Raw	Naive	MOS	EMOS	LBQ	LQR	DNN	DRN	BQN	QRN
CRPS	2.925	1.921	2.467	1.700	1.852	1.897	2.315	1.633	1.622	1.635
CRPSS	-0.523	0.000	-0.284	0.115	0.036	0.012	-0.205	0.150	0.156	0.149
RMSE	4.070	3.783	3.385	3.334	3.566	3.597	3.256	3.227	3.216	3.227
QL _{0.05}	-	0.392	-	0.346	0.427	0.462	-	0.335	0.320	0.323
QL _{0.95}	-	0.375	-	0.327	0.402	0.436	-	0.301	0.291	0.295

Metrics table

	Lead time conditioning strategy							
Model	Partition	Predictor	Embedding	Pred.+Emb.				
DRN	1.655	1.637	1.638	1.634				
BQN	1.641	1.627	1.626	1.622				
QRN	1.644	1.638	1.634	1.635				

CRPS for lead time conditioning strategies



Skill gain spatial distribution